Weierstrass' proof of the Lindemann-Weierstrass theorem (Part 2 of 3)

In part 2 of his 1885 paper, Weierstrass reproduced Lindemann's proof that, if \(z \) is algebraic, \(e^z + 1 \) is not zero.

The proposition is true if \(z \) is rational, so we need only consider the case where \(z \) has an imaginary component.

If \(z_i \) is algebraic then it is the root of an integral polynomial of degree \(r \) that has distinct roots \(z_1, z_2, \ldots, z_r \) (Lemma 1). We can assume that \(r > 1 \) because the complex conjugate of \(z_i \) is also a root. Now

\[
e^{z_i} + 1
\]

is non-zero for every algebraic \(z_i \) if and only if

\[
(1 + e^{z_1})(1 + e^{z_2}) \ldots (1 + e^{z_r}) = P
\]

is non-zero for every algebraic \(z_i \). It is this latter proposition that we prove.

We can write

\[
P = \sum_{k=0}^{p-1} e^{\xi_k} \quad \text{... (1)}
\]

where

\[
\xi_k = \epsilon_1 z_1 + \epsilon_2 z_2 + \ldots + \epsilon_r z_r ; \quad \epsilon = 0 \text{ or } 1
\]

The number of algebraically distinct \(\xi_k \) is \(p = 2^r \).

Because the \(\xi \) have degree one in \(z_1, z_2, \ldots, z_r \) of degree 1 (see Lemma 2 for definition) then if \(A \) is the leading coefficient of the integral polynomial of which the \(z_k \) are roots, by Corollary 2 to that Lemma

\[
A^p \prod_{\mu=0}^{p-1} (\xi - \xi_\mu) \quad \text{... (2)}
\]

is an integral polynomial.

Let \(n + 1 \) be the number of numerically distinct \(\xi \). We denote these quantities as \(\zeta \). Because \(\zeta_k \) include \(z_1, z_2, \ldots, z_r, n + 1 \geq 3 \). Furthermore since the \(\zeta_k \) are roots of the polynomial (2), they are also (Lemma 1) distinct roots of an integral polynomial

\[
f(z) = a_0 z^{n+1} + a_1 z^n + \ldots + a_n z + a_{n+1} \quad \text{................................. (3)}
\]

with \(a_0 > 0 \) (\(a_{n+1} \) is zero in this case since \(\zeta \) can take the value zero).

By part (i) of the Lemma described in Part 1, there exists a system of polynomials \(g_0(\zeta), \ldots, g_n(\zeta) \) of degree not greater than \(n \) in \(\zeta \), and with integer coefficients, such that (i) each of the differences

\[
g_\nu(\zeta_\lambda) e^{\zeta_\lambda} - g_\nu(\zeta_\nu) e^{\zeta_\nu}
\]

(where \(\nu, \lambda \) can take any of the values \(0, 1, \ldots, n \)) can be made arbitrarily small in
absolute value, and (ii) the determinant whose elements are \(g_\nu(\zeta_\lambda) \) is non-zero. Thus

\[-\epsilon_{\nu,\lambda} \delta < g_\nu(\zeta_0)e^{\zeta_\lambda} - g_\nu(\zeta_\lambda)e^{\zeta_0} < \epsilon_{\nu,\lambda} \delta \quad ; \quad \delta, \epsilon > 0 \]

Now we sum these inequalities over all the values taken by the \(\zeta_\mu \), including multiple values, and letting \(\zeta_0 = 0 \)

\[a_0^n g_\nu(0) \sum_{\mu=0}^{p-1} e^{\xi_\mu} - a_0^n \sum_{\mu=0}^{p-1} g_\nu(\xi_\mu) < \delta a_0^n \sum_{\mu=0}^{p-1} \epsilon_{\nu,\mu} (v = 0, \ldots, n) \]

where \(\delta \) can be made arbitrarily small. Since a permutation of the \(z_k \) results in a permutation of the subscripts \(\mu \) the second sum on the LHS is a symmetric polynomial of the \(z_k \) and by Corollary 2 to Lemma 2 is an integer.

Now if the numerical value of \(\zeta_\mu \) occurs \(N_\mu \) times in the set of \(\zeta_k \) then

\[\sum_{\mu=0}^{p-1} a_0^n g_\nu(\xi_\mu) = a_0^n \sum_{\lambda=0}^{n} N_\lambda g_\nu(\zeta_\lambda) \]

The sum on the RHS cannot be zero for every \(v \), since none of the \(N_\lambda \) is zero, and the determinant whose elements are \(g_\nu(\zeta_\lambda) \) is not zero, by (ii) of the Lemma of Part 1. Thus for at least one \(v \), by making \(\delta \) sufficiently small, the RHS of (4) can be made arbitrarily close to some positive integer, which would not be possible if \(P \) were zero. Therefore by (1), the result is proved.

Lemma 1: If \(z_1, \ldots, z_n \) are distinct roots of an integral polynomial of degree > \(n \), then they are the roots of an integral polynomial of degree \(n \). One such polynomial has a minimum positive leading coefficient and this polynomial is unique.

Proof: By the Fundamental Theorem of Algebra, if \(f \) has degree \(m \) in \(z \), it has \(m \) roots. Consequently

\[f(z) = A (z - z_1)^\mu_1 \ldots (z - z_n)^\mu_n \]

where \(A \) is an integer and \(\mu_1 + \ldots + \mu_n = m \). Say \(z_k \) is a root of multiplicity \(\geq 2 \) of the integral polynomial \(f(z) \). Then

\[f(z) = (z - z_k)^2 g(z) \]

\[f'(z) = 2(z - z_k)g(z) - (z - z_k)^2 g'(z) \]

so \(z_k \) is a root of \(f'(z) \). \(f'(z) \) is clearly an integral polynomial. We can repeat this process until all instances of multiple roots are eliminated, in a finite number of steps.

If \(z_1, \ldots, z_n \) are distinct roots of an integral polynomial of degree \(n \) and this polynomial has a negative leading coefficient, then multiplication by -1 produces a polynomial with a positive leading coefficient. Let \(az^n + a_{n-1}z^{n-1} + \ldots + a_0 \) be the polynomial of this type such that \(a \) is least. If \(az^n + b_{n-1}z^{n-1} + \ldots + b_0 \) is another such polynomial then the \(z_1, \ldots, z_n \) are also roots of \((a_{n-1} - b_{n-1})z^{n-1} + \ldots + (a_0 - b_0)\) in contradiction to the Fundamental Theorem of Algebra.
Lemma 2 (a version of the Fundamental Theorem of Symmetric Functions): if $f(z_1, \ldots, z_n)$ is a symmetric polynomial with integer coefficients and of degree μ it can be expressed as a polynomial $\varphi(s_1, \ldots, s_n)$ with integer coefficients and of degree μ in the basic symmetric functions s_1, \ldots, s_n.

Proof: Suppose $f(z_1, \ldots, z_n)$ is a symmetric polynomial in z_1, \ldots, z_n with integer coefficients. (We call $f(z_1, \ldots, z_n)$ symmetric if $f(z_1, \ldots, z_n) = \pi(f(z_1, \ldots, z_n))$ where π_i is any of the $n!$ permutations of the subscripts of the variables). If μ is the greatest value taken by $\mu_1 + \ldots + \mu_n$ then we call μ the degree of f. It is not hard to see that every $\pi_1(z_1^{\mu_1}z_2^{\mu_2} \ldots z_n^{\mu_n})$ must have the same coefficient.

We introduce a new indeterminate variable Z and define

$$P(Z) = (Z-z_1)(Z-z_2)\ldots(Z-z_n)$$

then

$$P(Z) = Z^n - s_1 Z^{n-1} + s_2 Z^{n-2} - \ldots + (-1)^n s_n$$

We call the s_k the basic symmetric functions and it can be easily shown that

$$s_k = \sum z_{i_1} z_{i_2} \ldots z_{i_k}$$

where the sum ranges over all possible sets of k distinct integers i_1, \ldots, i_k that can be chosen from 1, 2, ..., n. We note that s_k has degree k.

We can express f as a sum of terms in

$$c(\mu_1, \ldots, \mu_n) = \sum \pi_1(z_1^{\mu_1}z_2^{\mu_2} \ldots z_n^{\mu_n})$$

ordered such that terms of higher degree precede terms of lower degree and, where terms have equal degree, $\mu_1 \geq \mu_2 \geq \ldots \geq \mu_n$. Suppose

$$c(v_1, \ldots, v_n) = \sum \pi_1(z_1^{v_1}z_2^{v_2} \ldots z_n^{v_n})$$

(1)

is the term of highest degree. Now consider the polynomial

$$s_1^{v_1-v_2} s_2^{v_2-v_3} \ldots s_{n-1}^{v_{n-1}-v_n} s_n^{v_n}$$

(2)

If we expand this as a polynomial in z_1, \ldots, z_n we see that it contains a term

$$(z_1^{v_1-v_2})(z_1 z_2)^{v_2-v_3} \ldots (z_1 z_2 \ldots z_{n-1})^{v_{n-1}-v_n}(z_1 z_2 \ldots z_n)^{v_n} = z_1^{v_1} z_2^{v_2} \ldots z_n^{v_n}$$

exactly once. Since (2) is symmetrical, it must contain the expression (1) exactly once. Therefore if we subtract (2), multiplied by an appropriate integer, from $f(z_1, \ldots, z_n)$, we obtain a polynomial whose leading term has lower degree than (1). Since both f and (2) are symmetric functions, this polynomial must be also. If we repeat this process we must obtain after a finite number of steps a polynomial whose term of highest degree is that for which $\mu_1 = \mu_2 = \ldots = \mu_n = 0$. Thus we have an expression of the form

$$f - f_1 - \ldots - f_{j-1} = f_j = \text{a constant}$$

where the f_k are polynomials in the basic symmetric functions. This proves the result.
Corollary 1: if \(f(z_1, \ldots, z_n) \) is a symmetric polynomial with integer coefficients and of degree \(\mu \) and if these variables take specific values that are distinct roots of an integral polynomial of degree \(n \) with leading coefficient \(a \) then \(a^\nu f(z_1, \ldots, z_n) \) is an integer.

Proof: if \(z_1, \ldots, z_n \) are distinct roots of an integral polynomial of degree \(n \) with leading coefficient \(a \) then the polynomial must be

\[
a(z - z_1)(z - z_n) = az^n - a_s(z_1, \ldots, z_n)z^{n-1} + \ldots + (-1)^n a_s(z_1, \ldots, z_n)
\]

Therefore \(a_s \) is an integer.

By the Lemma, \(f \) can be expressed as a polynomial in the basic symmetric functions \(s_j \) whose term of highest degree is a sum of terms of the form \(k s_1^{\nu_1} \ldots s_n^{\nu_n} \) where \(k \) is some integer and \(\nu_1 + \ldots + \nu_n = \mu \). If we multiply this sum by \(a^{\nu_1} \ldots a^{\nu_n} = a^\mu \) we obtain

\[
k(a_s)^{\nu_1} \ldots (a_s)^{\nu_n}
\]

which is an integer. Clearly multiplying the terms of lesser degree by the same factor also yields integers.

Corollary 2: Let \(z_1, \ldots, z_n \) be complex variables and let \(\zeta_1, \ldots, \zeta_r \) be integral polynomials over the \(z_1, \ldots, z_n \) of degree \(v \) and such that any permutation of \(z_1, \ldots, z_n \) simply reorders the \(\zeta_1, \ldots, \zeta_r \). Let \(\phi \) be some integral function over the \(\zeta_1, \ldots, \zeta_r \) that is symmetric with respect to those variables and of degree \(\mu \). If \(z_1, \ldots, z_n \) take specific values that are distinct roots of an integral polynomial of degree \(n \) with leading coefficient \(a \) then \(a^\nu \phi(\zeta_1, \ldots, \zeta_r) \) is an integer.

Proof: A re-ordering of \(z_1, \ldots, z_n \) re-orders the \(\zeta \) and leaves \(\phi \) unchanged. Therefore \(\phi \) is a symmetric function of \(z_1, \ldots, z_n \). Now let \(\zeta_1^{\sigma_1} \zeta_2^{\sigma_2} \ldots \zeta_r^{\sigma_r} \) be a term of highest degree in \(\phi \). This term has degree \(v(\sigma_1 + \ldots + \sigma_r) = v\mu \) in \(z_1, \ldots, z_n \). The result follows by Corollary 1.